Tennessee Comprehensive Assessment Program

TNReady—Geometry Practice Test

Please PRINT all information in the box.

Student Name: ___

Teacher Name: ___

School: ___

District: __
<table>
<thead>
<tr>
<th>Conversion</th>
<th>Exponential Growth</th>
<th>Exponential Decay</th>
<th>Compound Interest</th>
<th>Continually Compounding Interest</th>
<th>Arithmetic Sequence</th>
<th>Geometric Sequence</th>
<th>Finite Geometric Series</th>
<th>Degrees</th>
<th>Radians</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inch = 2.54 centimeters</td>
<td>(y = a(1 + r)^t)</td>
<td>(y = a(1 - r)^t)</td>
<td>(A = P \left(1 + \frac{r}{n}\right)^{nt})</td>
<td>(A = Pe^{rt})</td>
<td>(a_n = a_1 + (n - 1)d)</td>
<td>(a_n = a_1(r)^{n-1})</td>
<td>(S_n = \frac{a_1(1 - r^n)}{1 - r})</td>
<td>(1 \text{ degree} = \frac{\pi}{180} \text{ radians})</td>
<td>(1 \text{ radian} = \frac{180}{\pi} \text{ degrees})</td>
</tr>
<tr>
<td>1 mile = 5280 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mile = 1760 yards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mile = 1.609 kilometers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kilometer = 0.62 mile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 meter = 39.37 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pound = 16 ounces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pound = 0.454 kilograms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kilogram = 2.2 pounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ton = 2000 pounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cup = 8 fluid ounces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pint = 2 cups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 quart = 2 pints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gallon = 4 quarts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gallon = 3.785 liters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 liter = 0.264 gallons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 liter = 1000 cubic centimeters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No test material on this page
Directions

This test has Subpart 1, Subpart 2, and Subpart 3. Each subpart contains various types of assessment questions. The following samples show the types of questions used.

You MAY NOT use a calculator in Subpart 1 of this test.

Sample: Graphing response

Rectangle $GHJK$ is shown.
continued

The rectangle is reflected across the \(x\)-axis.

Graph the image \(G'H'J'K'\) on the coordinate plane.
No test material on this page
Triangle RST and triangle $R'S'T'$ are shown.

For which transformation would triangle RST have image $R'S'T'$?

A. a 180° rotation
B. a translation left 8 units
C. a reflection over the y-axis
D. a reflection over the x-axis
Isosceles trapezoid $RSTU$, with K as midpoint of RS, L as midpoint of ST, M as midpoint of TU, and N as midpoint of RU, is shown. Point P is the intersection of KM and NL.

Which transformation carries the trapezoid onto itself?

- **M.** a 90° rotation clockwise about P
- **P.** a 180° rotation clockwise about P
- **R.** a reflection over KM
- **S.** a reflection over NL
Line \(l \) passes through \((0, 2)\) and \((4, 0)\) as shown.
continued

Use the coordinate plane to graph a line that goes through \((-1, -5)\) and is perpendicular to the line shown.
4 In the diagram shown, line l is parallel to line m, and lines n and p intersect at a point on line m.

Mark the phrase or value that best completes each statement shown.

- Angle 6 is congruent to angle 11 because they are _____________.
- The sum of the measures of angles 4, 7, and 5 is equal to 180°.

5 Shanika is making a decorative tablecloth for her small circular table. The table has a radius of 40 centimeters and a height of 60 centimeters. She wants the tablecloth to hang an even 10 centimeters above the ground.

Which design would give Shanika what she wants?

A. a circular piece of cloth with a radius of 90 cm
B. a circular piece of cloth with a radius of 100 cm
C. a circular piece of cloth with a radius of 110 cm
D. a circular piece of cloth with a radius of 130 cm
The three line segments dividing the two sides of the triangle shown are parallel to the base of the triangle.

Which proportion can be used to find the value of x?

M. $\frac{1}{4} = \frac{x}{8}$

P. $\frac{1}{4} = \frac{8}{x}$

R. $\frac{24}{40} = \frac{x}{8}$

S. $\frac{24}{40} = \frac{8}{x}$
Determine which statement is true in regard to \(\triangle ABC \) and \(\triangle LMN \).

A. \(\triangle ABC \sim \triangle LMN \) by AA criterion.
B. \(\triangle ABC \sim \triangle LMN \) by SAS criterion.
C. \(\triangle ABC \sim \triangle LMN \) by SSS criterion.
D. \(\triangle ABC \) and \(\triangle LMN \) are not similar.

The triangles \(QTP \) and \(SPT \) are shown. Ray \(MR \) is the perpendicular bisector of line segment \(PT \) and intersects line segment \(PT \) at point \(M \).

Which transformation would indicate that \(\triangle QTP \cong \triangle SPT \)?

M. horizontal translation the length of \(PR \)

P. horizontal translation the length of \(PT \)

R. reflection over \(QT \)

S. reflection over \(MR \)
Triangle 1 is transformed to create Triangle 2 such that sides RS, RT, and ST are congruent to sides VW, VU, and WU, respectively.

Select the answers that correctly complete the following statement.

$\triangle RST$ must be congruent to $\triangle VWU$ because of the ______ theorem. Thus, $\angle STR$ must be congruent to \angle ______.

- ○ ASA
- ○ SSS
- ○ SAS
- ○ AAS
- ○ UVW
- ○ VWU
- ○ WUV
A circle is represented by the equation shown.

\[(x - 1)^2 + (y - 2)^2 = 4\]

Which graph best represents this circle?
No test material on this page
Directions

Subpart 2 of this test contains various types of assessment questions.

You MAY use a calculator in Subpart 2 of this test.

Sample: Written response (fill in the blank)

In $\triangle QRS$, $m_{\angle Q} = 23^\circ$ and $m_{\angle R} = 66^\circ$.

What is the measure, in degrees, of $m_{\angle S}$?

Enter your answer in the space provided.

STOP

Do not go on to the next page until told to do so.
No test material on this page
Graph right triangle RST with vertices at $R(-3, 6)$, $S(3, 6)$, and $T(3, -2)$ on the coordinate plane shown.

Then, graph the circumscribed circle for triangle RST.
The measurements of the circumferences and radii of circles with different areas are recorded and analyzed. Which statement justifies why this information can be used to approximate the value of pi?

A. The area of a circle varies inversely as the radius.
B. The circumference of a circle varies inversely as the radius.
C. The circumference of a circle varies directly as the radius.
D. The area of a circle varies directly as the radius.

\[\triangle RSV \sim \triangle UST \]

Select the two statements that must be true.

M. \(\triangle STU \) is a right triangle.

P. \(RS \) is \(\frac{4}{3}x \) cm in length.

R. \(\angle VRS \cong \angle STU \)

S. \(SV \cong ST \)

T. \(m\angle RVS + m\angle UST = 90^\circ \)
In the figure, \overrightarrow{PS} is tangent to circle O at point S. Arc QR measures 110° and arc RS measures 150°.

What is the measure, in degrees, of $\angle QPS$?

Enter your answer in the space provided.
The windshield wiper of a car rotates through an angle of measure \(\frac{5\pi}{6} \) radians, as shown.

The shaded section of the diagram represents the area cleared by the 10-inch blade of the windshield wiper as it moves from one side to the other. Approximately what is the area cleared by the blade of the windshield wiper?

A. 125 in\(^2\)
B. 183 in\(^2\)
C. 367 in\(^2\)
D. 790 in\(^2\)
In the figure shown, $\triangle RST \sim \triangle UVW$.

Write an expression in terms of m and p that represents $\tan(R)$.

Enter your answer in the space provided.
The two chords shown in the circle intercept the given arcs.

What is the measure of \(\angle MPN \)?

M. \(70^\circ \)
P. \(75^\circ \)
R. \(115^\circ \)
S. \(150^\circ \)

Andrea wants to build a rectangular play area for her dog using 36 feet of fencing. She wants the play area to be as large as possible.

Determine the length and width, in feet, of the play area Andrea should build.

Enter your answers in the spaces provided.

Length =

Width =
Parallelogram $RSTU$ is shown. The perimeter of parallelogram $RSTU$ is 50 centimeters.

What is the value of x?

A. -5
B. -2
C. 3
D. 12
Chris is looking up at the top of a tree. He is standing 20 feet from the tree, and his line of sight is 35° from horizontal. His eyes are 5 feet above the ground.

To the nearest foot, how tall is the tree?

Enter your answer in the space provided.
Rectangle $ABCD$ is shown.

1. The measure of diagonal BD is cm.
 - 15
 - 18
 - 24
 - 30

2. The perimeter of triangle CDE is cm.
 - 33
 - 48
 - 54
 - 57
22 A right triangle has leg lengths of 3 centimeters and 4 centimeters. What is \(\cos \theta \) where \(\theta \) is the smallest angle of the triangle?

Enter your answer in the space provided.
No test material on this page
No test material on this page
Directions

Subpart 3 of this test contains various types of assessment questions.

You MAY use a calculator in Subpart 3 of this test.

Sample: Multiple choice (one correct response)

A water sprinkler covers a circular area with a diameter of 20 feet. If it is set to cover only an arc measuring 120 degrees, which is closest to the area, in square feet, the sprinkler will cover?

A. 10
B. 21
C. 105
D. 419
No test material on this page
Part of a proof is shown.

Given: \(\triangle RST \cong \triangle PTS, SP \parallel RT, \text{ and } SR \parallel PT \)

Prove: The sum of the measures of the interior angles of \(\triangle RST \) is 180°.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle RST \cong \triangle PTS)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle 1 \cong \angle 4)</td>
<td>2.</td>
</tr>
<tr>
<td>3. (\angle 7 \cong \angle 2)</td>
<td>3.</td>
</tr>
<tr>
<td>4. (m\angle 4 + m\angle 7 + m\angle 3 = 180^\circ)</td>
<td>4. Angles 3, 4, and 7 form a line.</td>
</tr>
<tr>
<td>5. (m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ)</td>
<td>5.</td>
</tr>
</tbody>
</table>
Review each statement of the proof. Then select a reason that correctly supports each statement in lines 2, 3, and 5 to complete the proof.

The reason for statement 2 is

- Substitution.
- Vertical angles are congruent.
- Alternate interior angles are congruent.

The reason for statement 3 is

- Substitution.
- Corresponding angles are congruent.
- Alternate interior angles are congruent.

The reason for statement 5 is

- Substitution.
- Corresponding angles are congruent.
- Alternate interior angles are congruent.
24 Using the coordinate plane, graph the line that is parallel to the line with equation
\(-2x + y = 1\) and that passes through the point \((1, -1)\).

25 The dimensions of a rectangular prism are 26 inches by 10 inches by 8 inches.
What is the surface area, in square inches, of the prism?

A. 548
B. 936
C. 1,096
D. 2,080
ΔRST is shown on a coordinate plane.
Create the final image of $\triangle RST$ after reflecting first over the x-axis and then over the y-axis on the coordinate plane provided.
Mr. Miller is trying to determine the width of his pond. He makes the measurements shown.

To the nearest foot, what is the width of the pond?

Enter your answer in the space provided.
The illustration shown represents the intersections of three roads: Highway 35, State Route 17, and Interstate 16. The region bounded by the three roads is represented by $\triangle ABC$. Each unit in the grid represents 1 mile.

Part A
Which statements about $\triangle ABC$ are true? Select the **three** that apply.

- **M.** $BC = \sqrt{58}$
- **P.** $\overline{AB} = \overline{AC}$
- **R.** $\tan(m\angle BAC) = 1$
- **S.** $m\angle ABC + m\angle ACB = 2(m\angle BAC)$
- **T.** $\frac{\sin(m\angle BAC)}{BC} = \frac{\sin(m\angle ABC)}{AC}$
Part B
A cell tower is to be constructed at the circumcenter of \(\triangle ABC \). How far, to the nearest hundredth mile, will that cell tower be from the intersection of Highway 35 and State Route 17?

A. 4.12
B. 4.53
C. 5.10
D. 5.39

Part C
Determine the area, to the nearest square mile, of the region bounded by the three roads.

M. 27
P. 28
R. 35
S. 38

Part D
A new road is to be constructed such that it will be parallel to Highway 35 and pass through Interstate 16 at Point \(D \). What is the slope of the line that would represent the new road?

Enter your answer in the space provided.
28 continued

Part E
The new road from Part D intersects State Route 17 at a new point E.

Mark one box in each row to match the equivalent ratios.

<table>
<thead>
<tr>
<th></th>
<th>AE</th>
<th>AB</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE</td>
<td>AC</td>
<td>BC</td>
</tr>
<tr>
<td>AD</td>
<td>DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>BD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>AE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29 Quadrilateral $LMNO$ has coordinates $L(5, 6)$, $M(9, 8)$, $N(11, 12)$, and $O(7, 10)$.

How can quadrilateral $LMNO$ be classified?

A. square
B. rhombus but not a square
C. rectangle but not a square
D. parallelogram but neither a rhombus nor a rectangle
30 A line segment has end points $R(-2, -2)$ and $S(4, 1)$. What are the coordinates of the point that is $\frac{2}{3}$ of the way from R to S on this line segment?
Enter your answer in the space provided.

31 $\triangle RST \sim \triangle UVW$. The dilation that maps $\triangle RST$ to $\triangle UVW$ has a dilation factor of $\frac{2}{3}$.
The measure of angle R is 20°, and the measure of angle S is 100°.
What is the measure, in degrees, of angle W?
Enter your answer in the space provided.

This is the end of the test.
No test material on this page
Subpart 1 Practice Test Questions

1. A B C D

2. M P R S

3.

4. ○ vertical angles
 ○ alternate interior angles
 ○ corresponding angles

 ○ 2
 ○ 5
 ○ 10
5. A B C D
6. B F R S
7. A B C D
8. B F R S
9.
 - ASA
 - SSS
 - SAS
 - AAS
 - UVW
 - VWU
 - WUV
10. A B C D
Subpart 2 Practice Test Questions

11.

12. A B C D

13. M P R S T

14.

15. A B C D

16.

17. M P R S
18.

19. A B C D

20.

21.
 - 15 cm
 - 18 cm
 - 24 cm
 - 30 cm

22.
Subpart 3 Practice Test Questions

23. Choose the correct answer.

- Substitution.
- Vertical angles are congruent.
- Alternate interior angles are congruent.

- Substitution.
- Corresponding angles are congruent.
- Alternate interior angles are congruent.

- Substitution.
- Corresponding angles are congruent.
- Alternate interior angles are congruent.
24.

25. A B C D
26.

27.
28. Part A: ⊙ ☐ ☐ ☐ ☐ (Select three)

Part B: ☐ ☐ ☐ ☐

Part C: ☐ ☐ ☐ ☐

Part D:

Part E:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{AE}{CE}$</td>
<td>$\frac{AB}{AC}$</td>
<td>$\frac{AB}{BC}$</td>
</tr>
<tr>
<td>$\frac{AD}{DE}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{AD}{BD}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{AD}{AE}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29. ☐ ☐ ☐ ☐

30.

31.
Subpart 1 Practice Test Questions

1. A B ● D
2. M P ● S
3.

4. ○ vertical angles
 ● alternate interior angles
 ○ corresponding angles

○ 2
○ 5
● 10
Answer Key

5. ● ○ □ ○

6. □ ○ ○ ●

7. ● ○ □ ○

8. □ ○ ○ ●

9. ○ ASA
 ● SSS
 ○ SAS
 ○ AAS
 ○ UVW
 ○ VWU
 ● WUV

10. ● ○ □ ○
Subpart 2 Practice Test Questions

11.

12. A B C D

13. M P R S T

14. 25

15. A B C D

16. \[\frac{2m}{p} \]

17. M B A S
18.

9

9

19.

A • ☒ ☐

20.

19

21.

☐ 15

☐ 18

☐ 24

• 30

cm

☐ 33

• 48

☐ 54

☐ 57

cm

22.

0.8
Subpart 3 Practice Test Questions

23.

○ Substitution.
○ Vertical angles are congruent.
● Alternate interior angles are congruent.

○ Substitution.
● Corresponding angles are congruent.
○ Alternate interior angles are congruent.

● Substitution.
○ Corresponding angles are congruent.
○ Alternate interior angles are congruent.
24.

25. A B ● D
26.

27. 249
28. Part A: ★ ★ ★ ★ ★ (Select three)

Part B: ★ ★ ★ ★ ★

Part C: ★ ★ ★ ★ ★

Part D:
\[-\frac{7}{3} \text{ or } -2.33\]

Part E:

<table>
<thead>
<tr>
<th></th>
<th>(\frac{AE}{CE})</th>
<th>(\frac{AB}{AC})</th>
<th>(\frac{AB}{BC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{AD}{DE})</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>(\frac{AD}{BD})</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>(\frac{AD}{AE})</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

29. ★ ★ ★ ★ ★

30. (2, 0)

31. 60
No test material on this page
TNReady Practice Test Standards Alignment and Key - Geometry (2017–2018)

<table>
<thead>
<tr>
<th>Subpart 1</th>
<th>Key</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>G.CO.A.5</td>
</tr>
<tr>
<td>2</td>
<td>R or C</td>
<td>G.CO.A.3</td>
</tr>
<tr>
<td>3</td>
<td>Graph of line with slope 2 passing through (−1, −5)</td>
<td>G.CO.D.12</td>
</tr>
<tr>
<td>4</td>
<td>Alternate interior angles; 10</td>
<td>G.CO.C.9</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>G.MG.A.1</td>
</tr>
<tr>
<td>6</td>
<td>S or D</td>
<td>G.SRT.B.4</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>G.SRT.A.3</td>
</tr>
<tr>
<td>8</td>
<td>S or D</td>
<td>G.CO.B.6</td>
</tr>
<tr>
<td>9</td>
<td>SSS; WUV</td>
<td>G.CO.B.8</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>G.GPE.A.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subpart 2</th>
<th>Key</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Graph of ΔRST with a circle with center at (0, 2) and radius 5</td>
<td>G.C.A.3</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>G.GMD.A.1</td>
</tr>
<tr>
<td>13</td>
<td>M, T or A, E</td>
<td>G.SRT.B.5</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>G.C.A.2</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>G.C.B.4</td>
</tr>
<tr>
<td>16</td>
<td>(\frac{2m}{p})</td>
<td>G.SRT.C.6</td>
</tr>
<tr>
<td>17</td>
<td>P or B</td>
<td>G.C.A.2</td>
</tr>
<tr>
<td>18</td>
<td>9; 9</td>
<td>G.MG.A.2</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>G.CO.C.11</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>G.SRT.C.8a</td>
</tr>
<tr>
<td>21</td>
<td>30; 48</td>
<td>G.CO.C.11</td>
</tr>
<tr>
<td>22</td>
<td>0.8</td>
<td>G.SRT.C.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subpart 3</th>
<th>Key</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Alternate interior angles are congruent.; Corresponding angles are congruent.; Substitution</td>
<td>G.CO.C.10</td>
</tr>
<tr>
<td>24</td>
<td>Graph of line passing through (1, −1) and (0, −3)</td>
<td>G.GPE.B.3</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>G.GMD.A.2</td>
</tr>
<tr>
<td>26</td>
<td>Graph of triangle with vertices (−1, −2), (−3, −5), and (3, −6)</td>
<td>G.CO.A.5</td>
</tr>
<tr>
<td>27</td>
<td>249</td>
<td>G.SRT.C.8a</td>
</tr>
<tr>
<td>28a</td>
<td>M, R, T or A, C, E</td>
<td>G.SRT.C.8</td>
</tr>
<tr>
<td>28b</td>
<td>D</td>
<td>G.C.A.3</td>
</tr>
<tr>
<td>28c</td>
<td>R or C</td>
<td>G.GPE.B.5</td>
</tr>
<tr>
<td>28d</td>
<td>(\frac{-7}{3}) or −2.33</td>
<td>G.GPE.B.3</td>
</tr>
<tr>
<td>28e</td>
<td>(\frac{AD}{DE} = \frac{AB}{BC}) and (\frac{AD}{BD} = \frac{AE}{CE}) and (\frac{AD}{AE} = \frac{AB}{AC})</td>
<td>G.SRT.B.5</td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>G.GPE.B.5</td>
</tr>
<tr>
<td>30</td>
<td>(2, 0)</td>
<td>G.GPE.B.4</td>
</tr>
<tr>
<td>31</td>
<td>60</td>
<td>G.SRT.A.2</td>
</tr>
</tbody>
</table>
No test material on this page